Tag Archives: 2021January

Properties and applications of 2D materials

Tuesday 26th January 2021, 1500-1700 (UK Time)

Prof Pablo Jarillo-Herrero (Profile)
The magic of moiré quantum matter

The understanding of strongly-correlated quantum matter has challenged physicists for decades. Such difficulties have stimulated new research paradigms, such as ultra-cold atom lattices for simulating quantum materials. In this talk I will present a new platform to investigate strongly correlated physics, namely moiré quantum matter. In particular, I will show that when two graphene sheets are twisted by an angle close to the theoretically predicted ‘magic angle’, the resulting flat band structure near the Dirac point gives rise to a strongly-correlated electronic system. These flat bands systems exhibit a plethora of quantum phases, such as correlated insulators, superconductivity, magnetism, Chern insulators, and more. Furthermore, it is possible to extend the moiré quantum matter paradigm to systems beyond magic angle graphene, and I will present an outlook of some exciting directions in this emerging field.

Prof Cinzia Casiraghi (Profile)
Water-based, defects-free and biocompatible 2D inks: from printed electronics to biomedical applications 

Solution processing of 2D materials allows to use simple and low-cost techniques such as inkjet printing for fabrication of heterostructures of arbitrary complexity. In this work I will show a general formulation engineering approach to achieve highly concentrated, and inkjet printable water-based 2D crystal formulations, which also provide optimal film formation for multi-stack fabrication. Examples of all-inkjet printed devices, such as large area arrays of photosensors on plastic, programmable logic memory devices, strain sensors on paper, capacitors and transistors will be discussed. The inks biocompatibility also allows their use in biomedical applications. 

Dr Cecilia Mattevi (Profile)

We investigate the precise synthesis of 2D materials and their assembly into three-dimensional functional devices for energy storage and energy conversion systems. The precise synthesis enables critical level of control through the crystal structure and doping, so that we can go beyond chemical composition of 2D materials. In this talk I will present our recent work in these directions.

Prof Paolo Samorì (Profile)
Chemical and physical sensing with 2D materials 

Two dimensional materials display exceptional physical and chemical properties which can be further enriched via controlled interfacing with (supra)molecular assemblies. Molecules, which can be designed and synthesized with properties at will, are able to impart them novel functions to 2D materials such as the capacity to respond to multiple external stimuli, with the ultimate goal of generating multifunctional hybrid systems for applications in (opto)electronics, sensing and energy.  

In my lecture, I will review our recent findings on the functionalization of 2D materials to engineer hybrid assemblies that can operate as selective chemical sensors for small molecules and ions [2,3]. I will also describe the fabrication of highly sensitive pressure and strain sensors for health monitoring.